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In this study, artificial neural network (ANN) technique is used to predict the friction and wear behavior of
various surface-treated structural steel (En 24) fretted against bearing steel (En 31). A three-layer neural
network with a back propagation algorithm is used to train the network. Fretting wear volume and
coefficient of friction obtained at different normal loads (ranging between 2.4 and 29.4 N) for various
treated samples (hardened, thermo-chemically treated, MoS2 coated) were used in the formation of training
data of ANN. Results of the predictions of ANN are in good agreement with the experimental results. The
degree of accuracy of predictions was 96.3 and 95.7% for fretting friction coefficient and wear, respectively.
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1. Introduction

Fretting wear is a typical wear form caused by low-
amplitude oscillatory movements between bodies in mechanical
contact. Generally, fretting occurs at the contacting surfaces
that are intended to be rigidly fixed, but actually undergo
minute alternating relative motion that is usually produced by
vibration. The displacement amplitude of such a relative motion
is typically less than 200 lm. This process is a result of various
wear mechanisms such as adhesion, abrasion, and oxidation-
assisted wear. All quasi-static assemblies in the machinery
experience fretting wear damage and some of the examples
reported are keys and keyways, splines, bearing races, leaf
springs, hub and shaft, pinned joints, flanges, flexible cou-
plings, bolted and riveted joints, etc. Much research has been
carried out to evaluate the fretting wear characteristics of
different materials under various test conditions. The mild wear
leads to the loss of press fit capability or it can cause
unallowable clearances that affect the functionality of the
mechanical system.

To mitigate fretting wear damage, the introduction of surface
treatments or coatings is reported to be an ideal solution (Ref
1). Many experiments have been carried out to evaluate the
effect of hard- and low-friction coatings (Ref 2, 3) and
lubricants (Ref 4) on the fretting wear behavior of steels.
Diffusion of nitrogen/boron on the steel surface results in the
formation of beneficial compounds and plays a dominant role
in combating wear under sliding wear conditions (Ref 5, 6). For

better performance, a duplex surface treatment, one that
combines nitriding and oxidation, was developed in recent
years and found to be effective against both sliding wear and
corrosion (Ref 7). Only limited experimental work has been
done to evaluate the effects of such thermo-chemical treatments
under various fretting conditions. Understanding the clear-cut
deterioration mechanism under fretting conditions and finding
an economical surface modification technique to combat
fretting surface damage is very much needed by industry.

An artificial neural network (ANN) is a computational
modeling tool that has emerged recently and found acceptance
in tribology for modeling real-world problems. Artificial neural
network is comprised of interconnected adaptive simple
processing elements, called artificial neurons that are capable
of performing parallel computations for data processing and
knowledge representation. One of the distinct characteristics of
ANN is its ability to learn and generalize from experience and
examples, and then adapt to changing situations. Artificial
neural network offers a fundamentally different approach to
material modeling and material damage control than statistical
methods. Artificial neural network modeling in the field of
tribology has been investigated (Ref 8).

In the present study, ANN is implemented to evaluate the
correlation between friction and wear under fretting conditions
based on the results of various test conditions for different
thermo-chemical and solid-lubricated coatings.

2. Test Materials and Experimental Methodology

The widely used structural steel En 24, for high-strength
application and bearing steel En 31, were used in the current
studies. Crossed-cylinder wear couple geometry, which results
in a point contact, was used. The dimensions of the cylindrical
specimens are 10 mm diameter and 15 mm length. As-received
En 24 and En 31 steel rods of 12 mm diameter were turned and
ground to the required dimensions. To improve the fretting
wear resistance, various surface strengthening processes were
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selected which are confined to fretting wear characteristic
behavior. En 24 steel specimens were subjected to hardening,
various thermo-chemical treatments such as salt bath nitriding,
boriding, and duplex treatment (post-oxidation of nitrided
specimen) and bonded solid-lubricant coatings. The counter
specimens made of bearing steel En 31 were hardened and
tempered. The chemical compositions of steel specimens are
shown in Table 1. Table 2 describes processing steps, the
micro-constituent present at the surface, and the corresponding
surface hardness values.

The principle of operation of the fretting wear test rig used
in current studies is described elsewhere (Ref 9). Specimens
were ultrasonically cleaned in acetone before testing. Tests
were carried out at a constant slip amplitude of 60 ± 3 lm.
Specimens were mounted rigidly in the specimen holder to
avoid any slip during test. Fretting wear tests were conducted at
different normal loads ranging from 2.4 to 29.4 N. Dead weight
loading was used. At least two tests were conducted in each
condition. All experiments were run at a constant test frequency
of 5 Hz for up to 1 ·105 cycles. Tests were performed under
dry sliding conditions without external lubrication at room
temperature (303 ± 3 K; 60 ± 5% RH). Wear volume loss was
calculated from the measured wear scar diameter using the
approximate equation given by Halling (Ref 10). The fretting
wear scar was observed using optical and scanning electron
microscopy.

3. Neural Network Structure and Operation

The most popular ANN architecture, the multi-layer feed
forward network with back propagation (BP) was used. Back
propagation is one of the most effective training algorithms for
multi-layer perceptions. It is a gradient descent technique used
to minimize the error for a particular training pattern (Ref 11).
The network has three layers of neurons: input layer, hidden
layer, and output layer. The hidden layer aids in performing
useful intermediary computations before directing the input to

the output layer. The neuron in one layer is connected to other
neurons in the succeeding layer by weights. The neuron
consists of multiple inputs and a single output. The basic
neuron model in a feed forward network is shown in Fig. 1.
Each input is modified by a weight that multiplies the input
value. The neuron will combine these weighted inputs, and
with reference to a threshold value and activation function
determine its output. The response of the neuron is a non-linear
function of its weighted inputs.

From the difference between the desired response and actual
response, the error is determined at the output layer and
propagated backward through the network. At each neuron in
the network, the error is used to adjust the weights and
threshold values of the neuron, so that at the next time, the error
in the network response will be less for the same inputs. After
each cycle, the error between the ANN output (predicted) and
desired values are propagated backward to adjust the weight in
a manner mathematically guaranteed to assure convergence
(Ref 12). Adjustments of the weights DWji can be calculated
using

DWjiðtÞ ¼ gdpjOpi ðEq 1Þ

where g is the learning rate, Opj is the actual output value of
output neuron j for pattern p, and dpj is the output neuron error
signal. The learning rate coefficient determines the size of
weight adjustments made at during each iteration, and hence,
influences the rate of convergence. From these equations, a
predetermined set of weights, a set of threshold values, and a
description of the network structure (i.e., the number of layers
and the number of neurons in each layer) are determined. It is
then possible to compute the response of the neural network to
any set of inputs.

Table 1 Composition of test specimens

Material

Composition (wt %)

C Mn Si Cr Ni Mo

En 24 0.40 0.70 0.30 0.80 1.80 0.45
En 31 1.00 0.30 0.25 1.50 0.20 0.05

Table 2 Treatment conditions for various treated En 24 steel

S. No. Process
Processing
temp. (K)

Duration/holding time
(min)

Subsequent
process

Micro-phase
constituent

Hardness
(HV)

1 Hardening and tempering 1118 15 Quenching Martensite and retained austenite 640
853 60 Air cool

2 Liquid nitriding 823 120 Air cool Epsilon iron nitride 725
3 Liquid boriding 1173 240 Air cool Iron boride 2050
4 Nitriding + post-oxidation 773 60 Air cool Hematite + Magnetite 645
5 MoS2 spraying and querying 305 30 Air cool MoS2 222

423

W1

W2

W3

X1

X2 f (∑ wixi)

X3
Weights 

Inputs 

Output 

Fig. 1 Basic neuron model in a feed forward network
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4. Neural Network Approach

MATLAB� tool functions are used for network modeling,
training and testing of the present problem. The function newff
creates a feed forward network. Four input function parameters
were used to formulate the network object. Figure 2 shows the
major steps followed for network modeling and training. Based
on the command functions, a network model is created with
initialized weights and biases. The friction and wear data of
various treated steel samples, tested at different normal loads,
were used as the source information for network training and
testing. The data are split into a training set and a testing set.
The testing data are from experiments and are used for
validating the trained network. The experimental data sets
consist of 35 pair of measurements, which include friction and
wear data. (A total of 70 values are used for Network I training
and testing, and for Network II training.) Among them, 20 data
sets were used for training the network and 15 were selected to
test the performance of the trained network.

4.1 Network Architecture Applied to Friction and Wear
Behavior

Two networks were established for the prediction of friction
and wear behavior under fretting condition. Figure 3 shows the

neural network architecture applied to friction and wear
behavior prediction (Network I and Network II). The number
of neurons in the input layer represents the number of input
parameters used in the network. The various treatments selected
to combat the wear damage are considered as one input. Micro-
hardness of treated samples is given as the input. The second
input is the normal load applied during testing. The other
testing conditions like frequency, number of cycles of opera-
tion, sliding velocity, and environmental condition are constant.
The predicting parameter in Network I is the coefficient of
friction. One hidden layer composed of four hidden neurons is
used. The tan sigmoid function is used for the hidden layer and
a linear function is used for the output layer. The training
algorithm is a resilient BP algorithm.

For the prediction of wear behavior, another network
architecture (Network II) is modeled. In this network, the
input parameters are treatment type and normal load. The
output parameter is total wear loss. The difference between this
network and Network I is the additional effective hidden
neurons in the hidden layer. To decide the structure of network,
the rate of error convergence was checked by changing the
number of hidden neurons and by adjusting the learning rate.
The functions and optimized process parameters for Network I
and Network II are given in Table 3.

4.2 Training and Testing of Network

Before presenting the training data set to the network, it is
necessary to carry out normalization and randomization of
input and corresponding output data for better performance and
convergence. X¢ = ((X)Xmin)/(Xmax)Xmin)) is the widely
employed method in unification where Xmax and Xmin indicate
the largest and smallest value of X, and X¢ is the unified value of
the corresponding X. Figure 4 represents the tasks followed
during the training phase. In Network I, the coefficient of
friction obtained experimentally for various surface treatments
was used as the target value. Surface hardness and normal load
were used as input neurons and trained to achieve the target
value. In Network II, similar inputs were considered in the
training process. Wear loss data obtained from experiments
were used as target values. Training is the act of continuously
adjusting the connection weights until they reach unique values
that allow the network to produce outputs that are close enough
to the actual desired outputs. In order to finalize the optimum
structure with minimum error response, the network training
parameter is changed and validation of the training performed.
The optimum training parameters for Network I and Network II
are given in Table 3.

Start
(Problem Definition)

Collection of experimental data sets 

Test set extract 

Creating a network 
net=newff(minmax(x),[P,Q],{'tansig','purelin'},'trainrp'); 
No. of neurons in the hidden layer, Activation functions 

Transfer functions, Learning rate, No. hidden layer 

Test network with test results 

Are the results 
completely 

satisfactory ?

Train network 

Stop

No

 gniniart egnah
C

 srete
marap

Fig. 2 Flow chart used for fretting wear data prediction

Treatment type 

Applied load 

WIJ WJk

Friction coefficient 
(Network I)/
Wear (Network II)

Fig. 3 The structure of three-layered network for the present study

Table 3 Network architecture parameters for friction
and wear behavior

Type Network I Network II

Architecture Normal feed-
forward MLP

Normal feed-
forward MLP

Hidden layer
number

1 1

Number of
neurons

Input—2 Input—2
Hidden—4 Hidden—6
Output—1 Output—1

Transfer function Tan-sigmoid Tan-sigmoid
Training function Resilient back

propagation (Trainrp)
Resilient back
propagation (Trainrp)
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In order to validate the network prediction capabilities, the
test data was used. Test data are presented to the trained
network, undergoes simulation and gives testing output results
(predicted results). The error in the network response is
calculated by comparing the predicted result with the actual
result for the two different network parameters. The mean error
(ME) is defined as the ratio of absolute error to number of data,
and following form is used in the error analysis.

ME ¼ 1

n

Xn

i¼1
Ti � Pij j ðEq 2Þ

where Ti is the target value (desired value), Pi is the predicted
value (output value), and n is the number of data.

5. Results and Discussion

5.1 Fretting Coefficient of Friction Prediction

The proposed model predicts the friction coefficient and
wear loss at different normal loads for various surface-treated
structural steel samples fretted against bearing steel. In Network
I, the applied training data is in the form of coefficient of
friction and shows the best results at the learning rate of 0.09
and 500 training cycles. The error goal fixed for the network is
1 ·10)4. Figure 5 shows the convergence characteristics
obtained during training phase for Network I. For every
increase in the number of training cycles, the mean square error
at the output neuron decreased and converged at 500th training
cycle. The calculated relative error distribution as a function of
test data derived from Network I is shown in Fig. 6. The level
of relative error is satisfactory and well within the limit. The
mean relative error between the experimental and predicted
values is within 3.7%. Comparison of experimental coefficient
of friction with the ANN predicted values for various surface-
treated En 24 steel samples is shown in Fig. 7. The predicted
ANN results are in line with the experimental data. The main
quality indicator of the neural network is its generalization
ability, and its ability to predict accurately the output of unseen
test data. The predicted friction behavior of non-conducted test
conditions was plotted for various treated samples. Figure 8
shows the predicted results at different normal loads. In the
MoS2 coated sample the coefficient of friction increases with
increase in normal load. This trend is not similar for thermo-

chemically treated samples and shows a decrease in coefficient
of friction with increase in normal load. The predicted
characteristic behavior is similar to experimental behavior and
reasoning for such behavior under experimental conditions are
discussed elsewhere (Ref 10, 13).

5.2 Fretting Wear Loss Prediction Behavior

Experimental test condition (input set) and corresponding
wear loss (output data) presented to the Network II for training
exhibit a good response at the following training parameter
values. The learning rate and total number of epochs are 0.008
and 300, respectively. The error goal set was 1·10)4. Mean
square error convergence of the Network II for the mentioned
training parameter value is shown in Fig. 9. The variation
between experimental and predicted wear loss was estimated
and mean relative error was calculated to be 4.3%. Figure 10
shows the distribution of relative error for each test data set and
is well within the limit. Predicted wear loss is closer to the
experimental results indicating the learning capability of the
Network II (Fig. 11).

By applying the untested load condition at various intervals,
the wear loss was predicted. Figure 12 shows the predicted
wear loss as a function of normal load for various surface-
treated samples. The wear loss is proportional to normal load
up to particular load and then decreases with further increase in
load. The change in the nature of contact under fretting

Normalizing the input (x) & output (y) 

Training data

Randomizing the input (x) & output 

Neural network model 

[net,tr]=train(net,x,y) 
a=sim(net x)

Training output results

Fig. 4 Block diagram indicating tasks performed in training phase

Fig. 5 Convergence characteristics during training phase applied to
friction behavior prediction
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Fig. 6 The relative error distribution as a function of test data
arrived from Network I
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conditions from gross slip (slip between the whole contact area)
to stick-slip (partial slip) limits the wear. This behavior is
similar for all types of treatments considered in the present
study. However, the load at which transition occurs is different
for each treatments. The chemical compatibility between the
contacting surfaces affects the fretting wear resistance and also
the transition conditions (Ref 10, 13). Table 4 shows the
predicted transition loads observed for different palliative
treatments. It facilitates evaluation of the change in wear

mechanism taking place and the corresponding wear losses for
various surface composition of En 24 steel fretted against
bearing steel En 31. The evaluation of transition normal load is
beneficial, because the change in contact condition to partial
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Fig. 7 Comparison of ANN and experimental coefficient of friction
results for: (a) MoS2 bonded En 24 steel, (b) hardened and tempered
En 24 steel, and (c) liquid nitrided and post-oxidized En 24 steel
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Fig. 9 Convergence characteristics during training phase applied to
wear behavior prediction
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stick-slip condition has been proven to be the most dangerous
regime for crack nucleation and service failure (Ref 14).

6. Summary

Artificial neural network was used to describe the friction
and wear behavior under fretting conditions for various selected
surface treatments. The proposed model predicts good agree-
ment with experimental data. Neural network modeling pro-
vides useful information from relatively small experimental
databases, leading to savings in cost and time.
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